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Abstract 

This paper analytically com pares the performance of the SRPT (Shortest-Remaining- 
Processing-Time) and PS (Processor-Sharing) scheduling policies. SRPT scheduling has 
long been criticized for treating large jobs unfairly, whereas PS scheduling is by definition 
fair. We evaluate SRPT and PS under conditions where the unfairness under SRPT is be- 
lieved to be most apparent: system overload. Specifically, we consider an single server with 
an alternating ON/OFF arrival process. During the ON periods the load at the server ex- 
ceeds 1. During the OFF periods the load at the server is 0. We derive expressions for mean 
response time as a function of job size under PS and SRPT, for general job size distributions. 
In comparing these expressions, we find that for our ON/OFF model: 

1. The mean response time under SRPT scheduling is far lower than under PS scheduling. 

2. When the job size distribution is exponential, the biggest jobs may ha.ve higher mean 
response time under SRPT scheduling as compared with PS scheduling. However, 
when the job size distribution is heavy-tailed all. jobs, including the very largest job, 
have lower (or only marginally higher) mean response times under SRPT scheduling 
as compared with PS scheduling. Heavy-tailed workloads are important because they 
arise naturally in many empirical computer workloads. 



1    Introduction 

In computer systems today, when multiple jobs contend for a single resource (e.g. CPU or 
bandwidth), the policy used for scheduling the jobs most closely resembles Processor-Sharing 
(PS). That is, the desired resource is time-shared among the contending jobs, with each job 
in turn receiving a small quantum of service. 

It is well-known that the Shortest-Remaining-Processing-Time-First (SRPT) scheduling 
policy yields better mean response time than PS scheduling, however, applications have 
shied away from using this policy for fear that SRPT "starves" big jobs [2, 14, 15, 13]. The 
fear is that the response times of the big jobs will be much higher under SRPT scheduling 
than under PS scheduling. 

In a recent paper [1], we proved that in the case of a single M/G/l queue where the job 
size (processing requirement, or service requirement) distribution is heavy-tailed, this fear 
is unsubstantiated. We showed that, provided the system load p is such that p < 1 and p 
is not too close to 1, and provided the job size distribution is heavy-tailed, then all jobs, 
including the very largest job have lower mean response time under SRPT scheduling than 
under PS scheduling (and the overall mean response time is far lower under SRPT scheduling 
as compared with PS scheduling). The above analysis required that p not be too close to 1 
(e.g. p < .99), so as to allow large jobs a turn to run. The above analysis was substantiated 
further by a second paper [6], where we implemented SRPT scheduling in a Web server, and 
compared performance of our SRPT-modified Web server with the original Web server in 
the case of p < .95 under trace-based Web workloads (which are heavy-tailed). (Web servers 
are a particularly good application for SRPT scheduling, since the service requirement of a 
Web request is proportional to the size of the file being requested, which is known) [6]. 

However, in real systems, such as Web servers, we can not be guaranteed that the load 
will always stay below 1. In fact it is much more common that the load bounces around, 
sometimes exceeding 1 and sometimes dropping to 0. Starvation under SRPT would appear 
to be more of a problem under overloaded conditions. The intuition commonly given is: 

A big job arrives. Immediately thereafter a whole bunch of small jobs arrive, and 
the big job never gets to run under SRPT [2, 4, H, 15, 13]. 

The above statement would be obvious if the system remained in overload forever. How- 
ever, it's not clear what exactly happens if the system alternates between overloaded and 
underloaded conditions (with mean system load under 1). Do big jobs necessarily do better 
under PS as compared with SRPT? 

In this paper, we therefore consider an ON/OFF load model, where the arrival rate 
alternates between overload and zero load. The exact model is described in Section 2. For 
analytical tractability, we assume that the duration of the ON and OFF periods approach 
infinity. We assume a general job size distribution 

Under the above model we derive the mean response time as a function of the job size 



under PS scheduling and under SRPT scheduling. We also derive several other interesting 
performance metrics, including the fraction of arriving jobs which are still in the system as 
a function of time, under SRPT and under PS scheduling. This latter metric has practical 
importance since it factors heavily into system overhead (e.g. context switching time and 
number of state buffers which must be maintained). We then evaluate these formulas in the 
case of a few specific job size distributions. 

We find that when the job size distribution is exponential. SRPT improves over PS with 
respect to mean response time and number of jobs in the system by at least a factor of 
4. However, this improvement conies at a price: the expected response time for large jobs 
under SRPT can be about 2-3 times higher than under PS. This "relative starvation" of the 
large jobs turns out to depend on the degree of overload during the ON period. The relative 
starvation of the big jobs under SRPT as compared with PS turns out to be worst when the 
load during the ON period is just slightly above 1. 

However, when the job size distribution is heavy-tailed, which is characteristic of many 

computer workloads [11. 8. 5. 9. 12]. the story changes. Under a Bounded Pareto job size 
distribution with o-parameter of l.ö. we find that SRPT improves over PS with respect to 
the mean response times of jobs and the number of jobs in the system by over an order of 
magnitude. These relative improvements of SRPT over PS are in fact greatest when the load 
during the ON period is not too high. Moreover, this improvement in mean performance 
does not come at the cost of hurting the performance of large jobs. In fact, even the very 
largest job has equal (or only marginally higher) response time under SRPT as compared 
with PS. 

In Section 5 we discuss the above results in detail and provide intuition for why they 
hold. The above results are encouraging with respect to the potential real-world applicability 
of SRPT scheduling. 

2    Problem Formulation and Notation 

Throughout this paper we will be assuming an M/G/l queue. Job sizes will be denoted by 
the random variable ,5'. The job sizes will be assumed to be independent and identically 
distributed with c.d.f. F(.r) and p.d.f. /(.r). 

The arrival process will consist of alternating ON/OFF periods. During the ON period 
(also called the "high load'" period), jobs arrive with mean arrival rate A/, and create a load 
of ph > 1. The high load period has fixed duration f/,. During the OFF period (also called 
the "low load" period) jobs arrive with mean arrival rate A; and create a load of p\ — 0. The 
low load period has fixed duration t\. 

Let p denote the average system load. Thus 

h ,      ti 
P =  Ph + ■ Pi 



We will always assume that the average load p < 1. 

Our model assumes alternating ON and OFF periods. During the ON period, jobs build 
up in the system as a function of time. We will derive an expression for this buildup. At the 
start of the OFF period, there is an accumulation of jobs which we refer to as "the bag of 
jobs." We will compute a distribution, Fr, on the remaining processing requirements of jobs 
in the bag at the start of the OFF period. The mean of this distribution will be E{5r}. 

If we assume that th and ti are finite, then we cannot guarantee that with probability 
1 the number of jobs at the beginning of every ON period is zero. Furthermore, deriving 
the system state under finite th and t\ is extremely difficult. Thus we need to assume that 
th -4- oo and t\ -¥ oo. In this case it is easy to see by the Central Limit Theorem, that when 
the average load, p < 1, the number of jobs at the beginning of every ON period is zero with 
probability 1. 

Some additional notation: The number of jobs in the system after t time into the high 
load period will be denoted by Nh(t). Likewise the number of jobs in the system after t time 
into the low load period will be denoted by Ni(t). Lastly, in analyzing SRPT scheduling, it 
will be useful to denote by p{y) the load made up of jobs of size < y. 

3    Previous Work 

We have not found any literature discussing this problem prior to 1994. In 1994 Robert and 
Jean-Marie [10] analyzed the PS scheduling policy in the case of overload (not an ON/OFF 
process) and derived the number of jobs in the system as a function of t in the limit where 
t —> oo. They also derived the limiting distribution of remaining times on jobs in the system 
in the case of t —>• oo. We use this result as a step within our proof of Theorem 1. 

In 1997 Chen, Kella, and Weiss [3] analyzed the number of jobs in the system under the 
PS scheduling policy in the case of an OFF process which begins with a bag of jobs. Our 
goals differ from at of Chen et. al. in that we are concerned with response times rather than 
number of jobs in the system, and also, we are concerned with an ON/OFF workload. Our 
analytical methods differ from those used by Chen et. al.. 

We have not found any mention of SRPT analysis under overload or under our ON/OFF 
workload in the above papers or in any papers in the literature. 

4    Analysis of response times under SRPT and PS 

In this section we will derive formulas for the expected response time of a job of size x in 
the M/G/l/PS and M/G/1/SRPT systems under the ON/OFF load model. 

We will start with a preliminary lemma, Lemma 1. Jean-Marie proved this lemma about 



M/G/l/PS queues under overload. For completeness we give a quick overview of their proof. 

Lemma 1   Consider an M/G/l/PS queue with load p > 1 and average arrival rate A.  Let 
N)i(t) denote the number of jobs in the system at time t.  Then, 

lim  = o (1) 

■where a is the solution to the following equation: 

1-   r f(x)e-"rd.r = a/\ (2) 
Jo 

Proof: Clearly lim^,-^    y    < A, so there exists b and c, such that for t > c, Nh(t) < bt. 

Consider a job of size .r, arriving at time to > c, then the job departs at time tj., such 
that 

, = /'" * 
Jto o    Nh(t) 

rfd dt 

~   Jto   bt 
1,   td 

= -blogr0 

So, td < toebx.  Thus, at time /, if a job of size .r arriving at time to > c is present in the 
system, then certainly to > te~hx. 

So, Nh(t) < Nh{c) + /0°° \{t - te-bl')f(x)d.r, provided te~hr > c. 

Choosing t large enough, 

Nh(t)<Nh(c) + Xt(l-Lf(b)) 

where L/(b) is the Laplace transform of / evaluated at b. Thus, 

^<A(l-L/(6)) 

Let us choose b = limsupf_>00 
h
f . Now observe that the function h(x) = x — A(l — 

Lf(x)) has a unique root a, in the range x > 0. Moreover, h(x) —> oo as x —>■ CXD. Thus, if 
b > a, then (1 — L/(b)) < b, leading to a contradiction. Thus b < a. 

Similarly we can show that lim inff^^,   y    > a. 

Thus the result follows.       ■ 



Theorem 1 In an M/G/l/PS system., under the ON/OFF load model, the expected response 
time for a job of size x, F>{T(x)ps} satisfies 

lim   E{^)P5} = (1     e ax) + (ph _ 1)FrJx) _ ^(Fr(x) _ e-ax) _ » i   F{x_z)e-azd 

th-*x> th 2 
+ (ph - l)Fre(x) - i(Fr(x) - e—) - \[F{* 

(3) 
where a is defined as in equation 2, and 

and 

J?>\f(z)(l-e-°l>-v))dz 
F,-{y) =  (4) 

F"(I) = ÄJC*""* (5> 

Proof: Consider a job of size x which arrives into the system. A few obvious observations: 
First, the job must arrive somewhere during the ON period. Second, the job must complete 
before the next ON period begins. We therefore consider a single ON/OFF cycle beginning 
at time 0. 

We can define some time, tx during the ON period, such that the job of size x will 
complete before the ON period is over if and only if the job arrives before time tx. 

To compute tx, observe that the service received by any job during the period [tx,th] 
equals x. Thus 

/■*/.    dy 

Lmf)=x (6) 

Now by 1, lim*-^ -Jf^- = a.  We will be loose and write this as Nh(t) = at, in which t 
case 6 gives tx = th.e~ax', or 

lim   — = e~ax (7) 
th^OD   th 

A rigorous proof of 7 is given in the footnote below1. 

Henceforth, to keep the main idea clear, we will not distinguish between lim^^oo |* = 
e~ax and tx = the~ax. It can be seen that this will not matter, since we will eventually be 
concerned with the ratio of the response time and th- The arguments can be made rigorous 
as in the footnote 1. 

'By Equation 1, limbec ^^ = a. So, given an e > 0, 3C, such that \^^- - ct| < e for t > C. 

Assuming th is large enough that the-'0"1"''1 > C, we get that 

the-(a+<)z  < tx < tfce-(»-0« 

Since th —¥ oo, letting e —» 0, we get limt 



We consider two cases: the case where the job of size x arrives prior to time tx and the 
case where the job of size x arrives after time tx. We will compute the mean response time 
in both cases. 

First suppose that the job of size x arrives prior to time tx. Let ta denote the arrival time 
of the job, and let tj denote its departure time (where tj < fy,). Then by (1). /(/ = tae

aT. So 
the response time of the job is 

ta(car-l) (8) 

Now since th —> oo, we can assume that ta is uniformly distributed in [0,tr], thus by (7) 
and (8) we have that: 

E {T(x)\ta e [0JX]} = f1 f (c- -l)dy=t±(l- e~°n (9) 
Jo    tx l 

Now we approach the case where t„ € [tx,ti,]-   In this case, our job of size x does not 
complete by time t),. The remaining size on our job at time t/, will be denoted by xr where 

''■ dy 

it„   ay 

which evaluates to 

/■''■ dy 
xr = x - /     — 

Jin «I! 

xr = x--\og^ (10) 
a       ta 

The remainder of this proof is devoted to computing the time from when the OFF period 
begins until our job completes. 

We need some observations: 

Consider an M/G/l/PS with load p = 0, starting at time 0 with an initial number of 
jobs N[(0), whose sizes are distributed with p.d.f. fr. 

Observation 1 A job of she y can't depart until all jobs of size < y have departed. So at 
the time when the job of size y departs, Ar/(0) • Fr(y) jobs have departed. 

Observation 2   When a job of size y departs, y units of work have been completed on all 
jobs of size > y. 

From the above two observations, it follows that our job of remaining size .?;,. will complete 
at time: 

Ar/(0) r zf,.(z)dz + N,(0)Fr(z)xr 
Jo 



This simplifies to 
Nt(0)E{Sr}Fre(xr) (11) 

where E {Sr} represents the mean remaining size on jobs at time 0 and the Fre(xr) is 
the equilibrium distribution of Fr evaluated at xr (i.e. Fre(xr) = E}s ■, JQ 

r Fr(y)dy). 

Now observe that Ar/(0)E{S,.} is just the work in the system at time 0, which is equal 
to (ph. — l)th- Thus, the time from the start of the OFF period until our job of remaining 
size xr completes is: 

{Ph~ l)thFre(xr) 

So the response time of our job is: 

th-ta + {ph-l)thFre{xr) (12) 

Now, given that ta is uniformly distributed in [tx,th], by (10) and (12) we have that, 

E{T(x)\ta G [tx,th]} = j*h ^-l^y {[th -y) + (Ph - l)thFre (x — log |)) dy    (13) 

Observe however that we have not yet derived FTe. That is, we still need to compute Fr, 
the distribution on the remaining sizes of jobs at the beginning of the OFF period. We do 
this now: 

We will compute the number of jobs with remaining size > y at the moment that the 
OFF period begins. 

Consider a job of (original) size z. This job will have remaining size > y at time th iff 
it's arrival time, ta, is such that ta > the~ai>z~y^ (by the above type of arguments). 

Thus the total number of jobs of size (z, z + dz) which have remaining size > y at time 
th is the number of jobs which arrive during £/le

_a(2~2/' and th, which is 

\thf(z)(l-e-alz-»))dz (14) 

Therefore the total number of jobs which have remaining size > y at time th is obtained 
by integrating 14 over all possible job sizes (greater than y), thus, 

PCC' 

/     \thf(z)(l-e-alz-»))dz (15) 
Jy 

To obtain Fr(y) observe that the total number of jobs at time th is ath- Thus, using 15 
the fraction of jobs with remaining size > y at the start of the OFF period will be given by 

— JZ°\f{z)(l-e-a(z-yy)dz 
Fr(y)=Jy     Mn — (16) 



Moreover, 

ive(.r) = E 

1      [x.  

A'J JO 

To calculate E[Sr], observe that E[Sr] is equal to the ratio of the total remaining work and 
the total number of remaining jobs at the beginning of the OFF period. Since the total 
remaining work at the end of the OFF period is (pi, - 1)//,, and the number in system is by 
definition ath, 

E[Sr] = (ph ~ 1} (18) 

Thus, we get 
FrA^) = T1-^ ['Frr(y)dy (19) 

\Ph - *■) JO 

Finally, since 

E{T(.r)} = ^E{T(.r)|/a e [0,/r]} + ^^E{7(.r)|*„ € [/„/,,]} 
'i, th 

Substituting 9 and 13 we get, 

E{r(.r)} = k A(i_f-") + ^_lk. /"' —}—- ({th -y) + (ph _ i)hFr. (x - -log !*.)) dy 
th   2 th      Jfr   (//, - tj.) \ \       a        y) J 

(20) 

E{r(,0) = |(1 - e~n + I (&^£ + j\p - l)thFrt (.r - I log ^) dy] 

E {T(.r)} = ^^1 + f" (p - l)Fre (x - - log ^) dy (21) 

where 

ft-ö"=i^ijrrA/(--)(,-'""s"i"'a"p 

Observe that the expression for Zs{r(;r)} in (21) involves three nested integrals, which 
makes it difficult to evaluate using a symbolic math package like Mathcmatica™. After 
some algebraic manipulation the number of nested integrals can be reduced to two. The 
proof is given in the Appendix. Finally we get, 

E{2»} = ^^ + (p-l)Fre(x)h - |(Fr(.r) - e-n -^-[F(* ~ ^""'dz 



Lemma 2 Let x0 be defined such that Ph(x0) = 1- Under SRPT, as th -4 oo, the rate at 
which jobs complete during the high load period is \F(x0) (and the rate of growth of jobs in 
the system is thus \F(x0)). The p.d.f of job sizes remaining in the system is: 

f(x) 
fr(x) = =-—-,  where x > x0 v;    F{xoy 

Proof: Consider the high load period. Let W(x,t) denote the work made up by jobs of 
of size less than x, arriving by time t. A necessary condition for a job of size x to receive 
service at time t is that W(x, t) — t < 0. 

For a job of size x > x0, the expected value of W(x,t) is p(x)t. Thus, by the Central 
Limit Theorem, W(x, t) is distributed like p(x)t-\-Ny/i, where N is some normally distributed 
random variable. As th —> oo we see that W(x,t) > t with probability 1. Thus the fraction 
of jobs with size x or greater which receive service during the high load period goes to 0. 
Thus the result follows. 

Theorem 2 In an M/G/1/SRPT system,  under the ON/OFF load model,  the expected 
response time for a job of size x is 

V{T(x)}oRPT lim l    V   IS SRPT _ 0j      {f     x <Xo 

4h->-oo th 

hm      i   VJSSRPT =ph^x)_ tf    x>Xo 
t/j-S-co th I 

where x0 is such that ph(x0) = 1. 

Proof: For jobs of size less than x0, clearly the response time is independent of th- So 

lim   EVW**rr = p 
<h-+oo th 

for x < x0. 

By Lemma 2, with probability 1, a job of size greater than x0 receives service only during 
the OFF period. So, the expected waiting time of the job during the ON period will be ^. 
Moreover, the time since the beginning of the OFF period until this job is serviced is equal 
to the work made up by jobs of size between x0 and x.   This amount of work is equal to 
fx0 ^

thyf(y)dy, which is equal to (ph(x) - Ph{x0))th, or just (ph{x) - l)th, since ph(x0) = 1. 

Thus it follows that the mean response time for a job of size x, such that x > x0 will be 
*i + (ph(x) - l)th.       m 



5    Direct analytic comparison of SRPT and PS under various 
workloads 

In Section 4 we derived the expression for the expected response time of a job of size x 
under SRPT and PS for the ON/OFF model. In this section we investigate these results for 
specific job size distributions. We investigate 2 different types of distributions: 

1. Exponential. 

2. Bounded Pareto. B(a = 1.5). This is a heavy-tailed distribution. 
Recall a Panto distribution with parameter o. is defined such that 

Pr[X > .r]~.T-c>. 

The Bounded-Pareio distribution [7] is characterized by three parameters: o, the ex- 
ponent of the power law: /,-. the smallest possible job: and p. the largest possible job, 
The probability density function for the Bounded Pareto I3(k.p.c\) is defined as: 

/(•'•) =  ,    n/;"'   v, ■'■-"-1    * <.r<p. 

In this paper. B(c\) will denote the distribution B(k.]),a) obtained by keeping the 
mean fixed (at 3000) and the maximum value fixed (at p = JO10), which correspond to 
typical values for Web workloads taken from [5]. 

5.1     Normalized Mean Response Times as a function of job size 

We begin by focusing our discussion on two performance metrics: 

1. Mean response time (under SRPT versus under PS). 

2. Expected response time for large jobs.   Specifically we will be interested in whether 
large jobs ''starve" under SRPT scheduling as compared with PS scheduling. 

Consider the mean response time for a job of size x, E {T(x)}. Under our ON/OFF load 
model, E{T(x)} is proportional to //,. Thus rather than discuss mean response time, we 
instead show normalized mean response time, defined as follows:2 

IST         i-    J A r       r.               m-      r     ■ i    r  ■             i-             E lT(x) I ON period of length t/,} 
Normalized Mean Response lime for job of size x = limtl^,^-—^ — — 

t-h 

Figure 1 shows the normalized mean response time as a function of job size under SRPT 
scheduling versus PS scheduling.   The job size is expressed as a percentile of the job size 

In the definition for normalized mean response time, we assume that the length of the OFF period is oo. 

10 
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Figure 1: This figure shows the normalized mean response times for various values of ph 
(ph = 1.1, Ph = 1-5 and ph = 2). The first cofymn assumes an exponential job size distribu- 
tion s and the second column assumes the 5(1.5) distribution. 



distribution (where 100 percentile indicates the very largest job). Observe furthermore that 
due to the choice of the ,r-a.xis, the area under the PS (respectively, SRPT) curve corresponds 
to the normalized mean response time under PS (respectively, SRPT). The plots on the left 
column of Figure 1 considers the exponential job size distribution at various values of />/,, 
and the plots on the right consider the distribution B(a = 1.5). 

We begin with a few observations which hold for all plots and are easily explained: 

Observation 3   Under SRPT most of the jobs have a normalized response time of 0. 

To see why, observe that under SRPT a job of size x will have a normalized response time 
of 0, if />/,(.r) < 1, that is if the load made up by jobs of size < x during the ON period is 
less than 1. However under PS, every job has a non-zero normalized response time. 

Observation 4 Under SEPT, let x be the size of the smallest job -which has a non-zero 
normalized response time. Observe that job x always seems to have a normalized response- 
time of exactly |. 

To see why, observe at job x never gets to run during the ON period and thus has an average 
waiting time of f/,/2 during the ON period. Moreover, job x gets to run immediately when 
the OFF period begins. Thus its normalized response time (as //, —> oc) is 1/2. 

Observation 5 Under SRPT, the normalized response time approaches />/, — ^ for large 
jobs. 

To see why, observe that a large job has a waiting time of ^ on the average during the ON 
period, and it receives service only towards the end during the OFF period. Since it takes 
{ph — l)fyi time to finish off accumulated work, the result follows. 

We now walk through Figure 1 and use the above observations to explain the plots. First 
compare Figure la (left) with Figure la (right). Both assume />/, = 1.1, but Figure la(right) 
assumes an exponential job size distribution, while Figure la(left) assumes a B(o. = 1.5) 
distribution. Let us contrast the curves with respect to the performance of the big jobs. 
Under the exponential job size distribution, jobs in the 0-98.5 percentile have a normalized 
response time of 0 under SRPT. The job in the 98.5"' percentile has a normalized response 
time of 0.5 under SRPT, but only 0.18 under PS. In fact, almost all the jobs in the top 1.5 
percentile do about 2-3 times worse under SRPT as compared with PS under the exponential 
job size distribution. By contrast under the £(1.5) distribution ( though not very clear from 
the plot) the normalized response under SRPT becomes non-zero only for jobs in the 99.94 
or higher percentile. This is true because £(1.5) is more heavy tailed than the exponential 
distribution, and thus only .06% of the large jobs account for the load between 1 and 1.1. 
Furthermore, while a job in the 99.94 percentile has a normalized response time of 0.5 under 
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SRPT, it has a normalized response time of almost 0.4 under PS. Thus the performance for 
this job under PS and SRPT is comparable. In fact, for slightly bigger jobs than this, the 
response times under PS become even worse than that under SRPT. 

Now contrast Figure la(right) and Figure la(left) with respect to mean normalized re- 
sponse time. For both figures the area under the SRPT curve is smaller than the area under 
the PS curve, — thus the mean response time under SRPT is much lower than under PS. 
The difference in mean response time is magnified in the case of the J3(1.5) workload, be- 
cause almost all jobs have zero normalized time under SRPT (and all remaining jobs are 
comparable under SRPT and PS). 

Figure lb shows the normalized mean response time under p^ = 1.5. Observe that 
for both the job size distributions there is negligible starvation for large jobs under SRPT 
as compared with PS. Arguing as in the above paragraph, for both job size distributions, 
the mean normalized response time is far lower under SRPT than under PS. Furthermore, 
this difference is exaggerated in the B(1.5) distribution where under SRPT only 2.8% jobs 
have a non-zero normalized response time, as opposed to about 10% for the exponential 
distribution. 

Finally when ph — 2 ( Figure lc), we observe that there is no starvation at all under 
SRPT as compared with PS under either job size distribution. In fact every job seems to 
perform worse (or similar) under PS, as compared to SRPT. This may seem contradictory 
since one could argue that at least the very largest jobs should have a larger response time 
under SRPT than under PS. We will explain this below. 

We summarize the trends we have seen in three observations. We offer intuition explain- 
ing each observation. 

Observation 6 Large jobs do not necessarily suffer under SRPT as compared with PS (as 
is commonly believed). (See Figure lc.) Particularly for heavy-tailed distributions, large jobs 
often do at least as well under SRPT as compared with PS, with respect to their expected 
response time. (See Figure 1 whole right column). 

To see why this is the case, observe that although large jobs do badly under SRPT, they 
do almost equally badly under PS. The point is that the average amount of service received 
by a large job during an ON period is negligible compared to its size. Thus this job stays 
in the system throughout the ON period (since its arrival). Moreover it is among the last 
of the jobs to complete during the OFF period, since its remaining size at the beginning of 
the OFF period is large compared to other remaining jobs. 

Observation 7 For a fixed ph, the more heavy-tailed the job size distribution the better the 
performance of big jobs under SRPT as compared with PS. Also, the more heavy-tailed the 
job size distribution the greater the improvement in the normalized mean response time under 
SRPT as compared with PS. (See Figure 1 right column as compared with left column). 
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To see why this is the case, recall that in a more heavy-tailed distribution, there are fewer 
jobs comprising the excess load. These few jobs are very big (think of them as elephants). 
Now, by the same argument as above, these elephants don't make much progress under PS 
during the ON period, thus their response times are comparable under PS and under SRPT. 
Furthermore, all jobs other than the elephants experience zero normalized mean response 
time under SRPT. Thus the overall normalized mean response time under SRPT is much 
lower than under PS. 

Observation 8  The higher the value of pi,, the lower the starvation of big jobs under SRPT 
as compared with PS. (See Figure 1) 

This is a surprising observation, in that one might conjecture that a low value of /?/, 

(barely overloaded ON times) would yield less starvation of big jobs. However it turns out 
that the reverse is true. Here's some intuition: When /?/, is closer to 1, PS gets more work 
done on the big jobs during the ON period. Thus at the start of the OFF period, the 

response times of the big jobs under PS is much smaller. Thus the big jobs in SRPT appear 
to be "starved" by comparison, although in fact their response times have improved as well 
— but not by as much. This intuition is in complete agreement with Figure 1. 

5.2     Growth in number of jobs in the system over time 

We now consider the number of jobs in the system as a function of time under PS and SRPT. 
The number in system is an interesting practical metric. Consider as an example a Web 
server which services its requests in SRPT order, as opposed to the traditional PS service 
order. The number of requests in the system corresponds to the number of simultaneously 
open connections in the Web server. The greater this number the more overhead is required 
by the Web server. Furthermore, if this number gets too high, the Web server simply crashes. 

The mean number of jobs in the system is obviously an increasing function of//,. Thus 
we instead look at the fraction of arrivals remaining in the system, which is defined as: 

r      ■    , •• ,- E{N(t) I ON period of length */,} 
fraction of arrivals remaining = (rm/^^- :  

A//, 

where N(t) denotes the number of jobs in the system at time t. We consider a normalized 
time axis, showing t/t}u rather than t. 

Figure 2 shows the fraction of arrivals remaining as a function of normalized time, for 
various values of />/,,, under SRPT and PS scheduling. Observe, a value of 1 on the x-axis 
indicates the end of an ON period. The plots in the left column assume an exponential 
job size distribution, whereas the plots in the right column assume the distribution 5(1.5). 
Again, the area under the curves is proportional to the mean number of jobs in the system 
(hence to the mean response time). 
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Below we state a few observations about the graphs and provide intuition explaining 
these observations. 

Observation 9 For all plots in Figure 2. the number of jobs in the system under SRPT is 

always significantly less than that under PS. 

Observation 10 For a fixed pi,, the more heavy-tailed the job size distribution the greater 
the improvement in number of jobs in the system under SEPT as compared with PS. (See 
Figure 2 right column as compared with left column). 

For example, Figure 2a (left) shows the number in system for the exponential distribution 
when pi, = 1.1. Observe that the number in system under SRPT is always 4-5 times lesser 

than that under PS. Figure 2a (right) shows the number is system for .0(1.5) distribution 
when pi, — 1.1. The improvements in the mean number in system under SRPT are much 

more significant, about 15-20 times better than that under PS. This observation coupled with 
Observation 6 about starvation in Figure la. (right) makes a very strong case for SRPT. Not 

only is there a 15-20 times improvement in the mean response time under SEPT, but this 
improvement does not come at the cost of starving large jobs. 

Observation 9 makes sense since SRPT obviously minimizes the number of jobs in the 
system at any time. The intuition behind Observation 10 is the same as that behind Obser- 
vation 7. 

Observation 11 Though still significant, the relative advantage of SEPT over PS (with 

respect to number of jobs in the system) decreases at higher values of pi,. (See Figures 2b 

and 2c). 

Observe that this does not contradict Observation 8, since that observation is concerned 
only with the large jobs. 

Observation 12 The number in system increases linearly during the ON period for both 

SRPT and PS. 

This follows from Lemma 1 and Lemma 2. 

Observation 13  The curve for the number of jobs under SEPT during the OFF period is 
always convex. 

This follows since SRPT works on jobs with the smallest remaining size first, thus the rate 
of clearance of jobs is maximum in the beginning of the OFF period and then decreases. 
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Observation 14 Observation 13 above is not true for PS. In fact, since PS timeshares 
among all the jobs, it somewhat delays getting jobs out at the beginning of the OFF period. 
This can be observed significantly in Figure 2c (right). Thus SRPT not only accumulates 
fewer jobs, but it also gets them out as quickly as possible. 

We end with an interesting side note: 

Observation 15 The number in system under PS decreases linearly under PS for the ex- 
ponential distribution. 

To see this, observe that at the end of an ON period, the remaining sizes of the jobs are also 
exponentially distributed with some rate, say /«,(since the distribution of the remaining size 
of a job conditional on the fact that it has received x amount of service is still exponential). 
Now observe that regardless of how many jobs there are remaining at the end of the ON 
period, the rate at which jobs will compete under PS is a constant: //,. (This follows, since 

if there are n jobs in the system, then since each job receives ^ of the service, it is likely 
to finish with rate ^. Since there are » jobs, the total rate at which jobs leave the system 
will be n ■ - = //,.) 

6    Conclusion 

This paper examines a load model consisting of alternating ON/OFF periods where the 
system load exceeds 1 during the ON period and is 0 during the OFF period. Under this 
load model, we compare SRPT and PS scheduling. We find that SRPT scheduling is a big 
win with respect to. mean performance metrics like mean response time and mean number of 
jobs in the system. More surprisingly, we find that, in the case where the job size distribution 
is heavy-tailed, this win does not come at the cost of starving the large jobs. In fact all jobs 
including the very largest perform better or only marginally worse under SRPT scheduling, 
as compared with PS scheduling. 

The above results seem counterintuitive. Shouldn't large jobs starve more under SRPT 
given temporary overload? We've found that the answer is no, but the reason can only 
partially be attributed to the superior properties of SRPT. At least equally relevant is the 
poor performance of PS. Our analysis shows that PS is particularly ineffective in dealing 
with periods of temporary overload. Due to its time-sharing nature, it deteriorates the 
performance of all the jobs. Moreover, PS is particularly slow at getting the system "back 
to normal" once the overload has disappeared. By contrast, SRPT accumulates far fewer 
jobs during the overload period, and is also much more efficient at getting them out once the 
overload period is over. A heavy-tailed job size distribution works strongly in SRPT's favor 
because it allows SRPT to complete all but a small fraction of the jobs during the overload 
period. 
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The superior performance of SRPT under fluctuating load conditions and heavy-tailed 
job sizes make SRPT an attractive alternative to the more traditional PS scheduling in 
applications where job sizes are known, or can be estimated. 
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7    Appendix 

We will simplify the integral / = //'' FTe (x - £ log M dy 

Set y — the~az, then dy — —atile~a:dz and 

/=  f Fre{x-z)ath(-
a~-dz 

18 



Applying integration by parts, we get 

/ = [-Fre(x - z)the-a% - J%he-azTr(x - z)^-dz 

I = Fre(x)th - Ix 

where 

h = Jo the~aZ^x - *)EJS]dz (22) 

We will show in Lemma 4 that 

h=psp^^w - --">+2^k />* - z)e~"iz 

Thus giving us 

We first begin with an identity which relates the pdf and the cdf of the remaining service 
times of jobs under PS. 

Lemma 3 Let fr(y) and Fr(y) denote respectively the pdf and cdf of the remaining service 
of the jobs at the start of the OFF period under PS. Then 

Proof: By (16) we know that 

My)   = 
fZ°\f(z)(l-e-*(*-v))dz 

a 
\F(y)        v r A 
 e 

r°° A ay /     -f{z)e~azdz (23) 
Jy    a 

Since fr(y) = -±Fr(y) 

-A — A A t°° A 
-fr.(y) = —/(y) + eay-f{y)e~ay - ae0» /     -f(z)e'azdz 

11 ill Jy d 

Observing that the first and second terms cancel out, we get 
/•oo 

fr(y) = \ea« f(z)e~azdz (24) 
Jy 

Comparing the expressions for Fr(y) and fr(y) given by (23) and (24), the result follows. 
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Lemma 4 Let I\ be defined as in equation 22. then 

/i = '" -^-^+2^i;j^'-'i'<h 
{2a)E[Sr 

Proof: 

71 = r&^'--^ E[i 

h 
aE[Sr] 

aE[Sr 
-AFr(x) -<-"■>•) + 

aE[Sr 

-AFr(x)-e- 

" - r 
A//, 

f-„.-     '* 

4*] (A"(-r 
-   /   T7.>-      r.\e 

(-fr(,--z)).-d: 

aFr{.r-z))dz (By Lemma 3) 

The last equality follows, sin re the final term in this expression is just 1\. Thus 

(2rt.)£[,S,.J 2«E[,SrJ Jo 
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